Deposition of carbon nanotubes in commonly used sample filter media
Authors
Abstract:
There is no single standard technique or methodology to characterize the size, structure, number, and chemical composition of airborne carbon nanotubes. Existing analytical instruments and analytical techniques for evaluating nanoparticle concentrations cannot simultaneously provide morphology, state of agglomeration, surface area, mass, size distribution and chemical composition data critical to making occupational health assessments. This research utilized scanning electron microscopy and thermogravimetric analysis to assess the morphology and mass of carbon nanotubes collected using various commercial sample filters. It illustrated carbon nanotube agglomeration, deposition and distribution in commonly used sample filter media. It also illustrated that a sufficient mass for carbon nanotube analysis by thermogravimetric analysis is uncommon under most current research and production uses of carbon nanotubes. Individual carbon nanotubes were found to readily agglomerate with diameters ranging from 1 – 63 µm. They were collected at the face of or within the filter. They were not evenly distributed across the face of the filters.
similar resources
deposition of carbon nanotubes in commonly used sample filter media
there is no single standard technique or methodology to characterize the size, structure, number, and chemical composition of airborne carbon nanotubes. existing analytical instruments and analytical techniques for evaluating nanoparticle concentrations cannot simultaneously provide morphology, state of agglomeration, surface area, mass, size distribution and chemical composition data critical...
full textThick Film Deposition of Carbon Nanotubes by Alternating Electrophoresis
Electrophoretic deposition of carbon nanotubes (CNTs) using alternating current electric fields (0.01-1000 Hz) is reported. Pure acetone was used as suspending medium. Two parallel gold electrodes were used as depositing substrate. The effect of depositing parameters such as frequency and three waveforms (sinusoidal, rectangular and triangular) on deposit yield was investigated. According to ou...
full textDielectrophoretic Deposition and Alignment of Carbon Nanotubes
The carbon nanotube (CNT) is a unique form of carbon material. Since its discovery, CNT has been intensively studied due to its remarkable electrical, mechanical, thermal, and chemical properties (Iijima, 1991; Katz & Willner, 2004). Based on the structures and dimensions, CNTs can be divided into two groups: single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). An S...
full textinvestigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اولConvenient, simplified preparation of less commonly used media.
A method is described for the preparation of some less commonly used media. This approach should encourage use of these media.
full textOptimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes
Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...
full textMy Resources
Journal title
volume 1 issue 3
pages 189- 198
publication date 2015-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023